The Quality of mt-loop DNA Segment of Smokers and Nonsmokers in Lagos, Nigeria for Possible use in Forensic Biology

Authors

  • Joseph Bamidele Minari Department of Cell Biology and Genetics, University of Lagos, Akoka, Lagos, Nigeria
  • Damilola Ololade Ajayi Department of Cell Biology and Genetics, University of Lagos, Akoka, Lagos, Nigeria

DOI:

https://doi.org/10.17063/bjfs11(2)y202293-110

Keywords:

mtDNA, saliva, cigarette, smoker

Abstract

Mitochondrial DNA (mtDNA) is a small circular DNA responsible for transmission of traits. In forensic biology, the high sensitivity of mtDNA analysis allows forensic scientists to obtain information from evidence associated with crime scene. This study was carried out to investigate the mtDNA segment of smokers and non-smokers and to determine to what extent smoking affects the quality of the mtDNA in the sample population. Twenty five cigarette butts were obtained from a bar and twenty five samples were also obtained from saliva of non-smokers using swab stick. Mitochondrial DNA (mtDNA) was extracted from individual samples using zymo kit, spectrophotometer was used to check for the concentration and purity of the extracted mtDNA. Polymerase chain reaction (PCR) was carried out in a gradient thermocycler to ascertain the hypervariable region of the mtDNA using the following primer sequence. Agarose gel electrophoresis was carried out to know the amplicon size using 100 base pair of ladder. The DNA purity on saliva extract for non-smokers was found to be higher (A260/280 2.06 - 1.82) than the purity of saliva from smokers (A260/280 1.82-1.0). The concentration of DNA found on the saliva traces from non-smokers was higher (26.2 - 3.0 ng/µl) than those extracts from smokers (26.2 - 2.23ng/µl). DNA bands obtained from agarose gel electrophoresis showed amplification of the hypervariable region of mtDNA size ranges from 295-300 base pair (bp). This study showed that the hypervariable region of the mtDNA of both smokers and non-smokers have the same range of nucleotide base pair (bp).

References

Yudianto A, Masniari N, Muhamma AJ, Deka BB. DNA Methylation on Bloodstain as a Forensic Age Estimation Method. Proceedings of the International Conference on Law, Economics and Health (ICLEH 2020). 2020;52 (1):1863-8. https://doi.org/10.2991/aebmr.k.200513.006 DOI: https://doi.org/10.2991/aebmr.k.200513.006

Modi JP. A Textbook of Medical Jurisprudence and Toxicology. 24th Ed. W. Wood and Company. 2011.

Tanuj K, Kewal K. Personal Identification in Forensic Examinations. Anthropol. 2013;2 (1):1-2.

Oday AH, Nur AA, Zainal ZA. Human Identification System: A Review. Intern Journ of Comp & Bus Res. 2019;9(3):20-7.

Falch M, El-Sayed MJS, Takousis P, Pesce F, Bonnefond A, Andersson-Assarsson JC, Sudmant. PH, Dorajoo R, Al-Shafai MN, Bottolo L, Ozdemir E, So HC, Davies RW, Patrice A, Dent R, Mangino M, Hysi PG. Low Copy number of the salivary amylase gene predispose to obesity. Nat Gen. 2014;46(5):492-7. https://doi.org/10.1038/ng.2939 DOI: https://doi.org/10.1038/ng.2939

Hansen TV, Simonsen MK, Nielsen FC, Hundrup YA. Collection blood, saliva and buccal cell samples in a pilot study on the Danish nurse cohort: comparison of the response rate and quality of genomic DNA. Can of Epidem Bio and Preven. 2007;16(10):2072-6. https://doi.org/10.1158/1055-9965.EPI-07-0611 DOI: https://doi.org/10.1158/1055-9965.EPI-07-0611

Peng JI, Jayapal SR, Lodish HF. Enucleation of cultured mouse fetal erythroblasts requires Rac G TPases and mDia 2. Nat Cel Biol 2008:10:314-32. https://doi.org/10.1038/ncb1693 DOI: https://doi.org/10.1038/ncb1693

Gaza-Nurun NS, Mohammad ZS. Mitochondrial DNA and methods for forensic identification. Jour of Foren Sci and Cri Inves. 2018;9(1):555755-9.

Tan VM, Ooi DS, Kapur J, Wu T, Chan, YH, Henry CJ, Lee, YS. The role of digesting factors in determining glycemic response in a multi ethnic Asian population. Euro Jour of Nutri. 2016;55(4):1573-81. https://doi.org/10.1007/s00394-015-0976-0 DOI: https://doi.org/10.1007/s00394-015-0976-0

Tolmachov OE. Transgenic DNA modules with pre-programmed self-destruction: Universal molecular devices to escape 'genetic litter' in gene and cell therapy. Med Hypo. 2015;85(5):686-99. https://doi.org/10.1016/j.mehy.2015.08.012 DOI: https://doi.org/10.1016/j.mehy.2015.08.012

Grady JP, Pickett SJ, Ng YS, Alston, CL, Blakely EL, Hardy SA, Feeney CL, Bright AA, Schaefer AM, Gorman GS, McNall RJ, Taylor RW, Turnbull DM, McFarland R. mtDNA heteroplasmy level and copy number indicate disease burden in mitochondrial disease. EMBO Mol Med. 2018;10(6):e8262. https://doi.org/10.15252/emmm.201708262 DOI: https://doi.org/10.15252/emmm.201708262

Amit B, Edward JR, Anshul K, Charles GD, Dan M. Initiation of mtDNA transcription is followed by pausing and diverges across human cell types and during evolution. Gen Res.2017;27(3):362-73. https://doi.org/10.1101/gr.209924.116 DOI: https://doi.org/10.1101/gr.209924.116

Michael JO, Keith AS, Daniel LK . Genetics, genomics and their relevance to pathology and therapy. Bes Prac & Res. Clin Rheuma. 2015;28(2):175-89. https://doi.org/10.1016/j.berh.2014.05.001 DOI: https://doi.org/10.1016/j.berh.2014.05.001

Fowler RF, Skinner DM. Eukaryotic DNA diverges at a long and complex pyrimidine: purine tract that can adopt altered conformation. The Journ of Biol Chem. 1986;261(19):8994-9001. https://doi.org/10.1016/S0021-9258(19)84479-4 DOI: https://doi.org/10.1016/S0021-9258(19)84479-4

Garrido-Ramos MA. Satellite DNA in Plants: More than Just Rubbish. Cyto & Gen Res. 2015;146:153-170. https://doi.org/10.1159/000437008 DOI: https://doi.org/10.1159/000437008

Lohe AR, Roberts PA. Evolution of satellite DNA sequences. In: Verma RS, editor. Drosophila in Heterochromatin: Molecular and Structural Aspects. Cambridge: Cambridge University Press. 1988. p.76-82.

Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. Repetitive DNA. 2012;7:126-152. https://doi.org/10.1159/000337122 DOI: https://doi.org/10.1159/000337122

Maria L, Carneiro V, Luciane S, Augusto L, Carla FM. Microsatellite markers: what they mean and why they are so useful. Gen & Mol Biol. 2016;39(3): 312-328. https://doi.org/10.1590/1678-4685-GMB-2016-0027 DOI: https://doi.org/10.1590/1678-4685-GMB-2016-0027

Gous M, Mohd YR, Mohd RI, Adam BP, Harun AR, Khan NI, Mohammad AL. A Review of Microsatellite Markers and Their Applications in Rice Breeding Programs to Improve Blast Disease Resistance. Intern Jour of Mol Sci. 2013;14:22499-528.

https://doi.org/10.3390/ijms141122499 DOI: https://doi.org/10.3390/ijms141122499

Gaza Nurun NS, Mohammad ZS. Mitochondrial DNA and methods for forensic identification. Jour of Fore Sci and Cri Inves. 2018;9(1): 555755-555759.

Innis MA, Myambo KB, Gelfand DH, Brow MA. DNA sequencing with thermos aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. PRONAS. 1988;85(24):9436-40. https://doi.org/10.1073/pnas.85.24.9436 DOI: https://doi.org/10.1073/pnas.85.24.9436

Avinash M, Anurag KS, Gaur RK. Molecular Markers: Tool for Genetic Analysis. Anim Biotech. 2014;1:289-305. https://doi.org/10.1016/B978-0-12-416002-6.00016-X DOI: https://doi.org/10.1016/B978-0-12-416002-6.00016-X

Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Foren Sci Intern. 2009;188(1-3):1-17. https://doi.org/10.1016/j.forsciint.2009.02.013 DOI: https://doi.org/10.1016/j.forsciint.2009.02.013

Gill P. An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Intern Acad of Leg Med. 2001;114(4-5):204-10. https://doi.org/10.1007/s004149900117 DOI: https://doi.org/10.1007/s004149900117

Clayton TM, Whitaker JP, Sparkes R, Gill P. Analysis and interpretation of mixed forensic stains using DNA STR profiling. Foren Sci Intern. 1998;91:55-70. https://doi.org/10.1016/S0379-0738(97)00175-8 DOI: https://doi.org/10.1016/S0379-0738(97)00175-8

Minari JB., Adebiyi B, Feyikemi D, Adetuyi SO, Umoffia EV. Investigation of DNA from traces of saliva extracted from cigarette butts of smokers in Lagos exposed to different experimental conditions using STR markers. Journ of Sci Res & Dev. 2021;20(1):15-24.

Bowers CM. Problem-based analysis of bitemark misidentifications: the role of DNA. Foren Sci Intern. 2006;159(1):104-9. https://doi.org/10.1016/j.forsciint.2006.02.032 DOI: https://doi.org/10.1016/j.forsciint.2006.02.032

Reitsma MB, Kendrick PJ, Ababneh E, Abbafati C, Abbasi-Kangevari M, Abdoli A, Abedi A, Abhilash ES, Abila DB, Aboyans V, Abu-Rmeileh NM, Ahmad S, Ahmadi K.. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet. 2021;397:2337-60. https://doi.org/10.1016/S0140-6736(21)01169-7 DOI: https://doi.org/10.1016/S0140-6736(21)01169-7

American Cancer Society, Vital Strategies. The Tobacco Atlas: [Nigeria Fact Sheet]. https://files.tobaccoatlas.org. Accessed October, 10 2021.

National Bureau of Statistics, Federal Ministry of Health, World Health Organization Regional Office for Africa, CDC Foundation, Department of Health and Human Services USA, Centers for Disease Control and Prevention . GATS Nigeria. Global Adult Tobacco Survey: Country Report 2012. http://www.nigerianstat.gov.ng. Accessed September 28, 2021.

African Tobacco Control Alliance. The sale of single sticks of cigarettes in Africa. https://atca-africa.org/en/the. Accessed August 20, 2021.

Ijeoma UI, Chika NO, Deborah O, Benjamin SCU, Scott M, Emmanuel NA, Sijiu W, Echezona EE. Predictors of current tobacco smoking by adolescents in Nigeria: Interaction between school location and socioeconomic status. Toba Indu Dise. 2020;18:13-9. https://doi.org/10.18332/tid/117959 DOI: https://doi.org/10.18332/tid/117959

Aguirre A, Testa-Weintraub, LA, Banderas, JA, Haraszthy, GG, Reddy, MS, Levine MJ. Sialochemistry: A diagnostic tool? Critic Rev in Oral Biol and Med. 1993;4:343-50. https://doi.org/10.1177/10454411930040031201 DOI: https://doi.org/10.1177/10454411930040031201

Bianchi L, Liò P. Forensic DNA and bioinformatics. Bri Bioinforma. 2007;8(2):117-28. https://doi.org/10.1093/bib/bbm006 DOI: https://doi.org/10.1093/bib/bbm006

Van SK, De-Ceuleneer M, Dhaenens, M, Van. HD, Deforce D. Mass spectrometry-based proteomics as a tool to identify biological matrices in forensic science. Intern journ of leg med. 2013;127(2):287-98. https://doi.org/10.1007/s00414-012-0747-x DOI: https://doi.org/10.1007/s00414-012-0747-x

Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccarini C, Earl HM., Pharoah PD, Dunning AM, Caldas C. Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BioMed Cent Med Gen. 2012;5:19-24. https://doi.org/10.1186/1755-8794-5-19 DOI: https://doi.org/10.1186/1755-8794-5-19

Shailja C. Saliva as a forensic tool. Journ of Foren Dent Sci. 2019;11(1):1-4. https://doi.org/10.4103/jfo.jfds_69_18 DOI: https://doi.org/10.4103/jfo.jfds_69_18

Susmita S, Sanjeev, K.. Saliva in forensic odontology: A comprehensive update. Journ of ora and maxillof patho. 2015;19(2):263-65. https://doi.org/10.4103/0973-029X.164549 DOI: https://doi.org/10.4103/0973-029X.164549

Parson W, Gusmão L, Hares DR, Irwin JA, Mayr WR, Morling N, Pokorak E, Prinz M, Salas A, Schneider PM, Parsons TJ. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing. Foren Sci Intern Gen. 2014;13:134-42. https://doi.org/10.1016/j.fsigen.2014.07.010 DOI: https://doi.org/10.1016/j.fsigen.2014.07.010

Bonanomi G, Incerti G, Cesarano G, Gaglione SA, Lanzotti V. Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR. PlosOne. 2015;10(1):e0117393. https://doi.org/10.1371/journal.pone.0117393 DOI: https://doi.org/10.1371/journal.pone.0117393

Haske-Cornelius O, Pellis A, Tegl G, Wurz S, Saake B, Ludwig R, Sebastian A, Gibson S, Nyanhongo GS, Georg M, Guebitz GM. Enzymatic Systems for Cellulose Acetate Degradation. Catalyst. 2017;7(1):287-95. https://doi.org/10.3390/catal7100287 DOI: https://doi.org/10.3390/catal7100287

Hedman J, Dalin E, Rasmusson B, Ansell R. Evaluation of amylase testing as a tool for saliva screening of crime scene trace swabs. Foren Sci Intern Gen. 2011;5:194-8. https://doi.org/10.1016/j.fsigen.2010.03.003 DOI: https://doi.org/10.1016/j.fsigen.2010.03.003

Casey L, Engen S, Frank, G. Quantitative Analysis of the DNA Distribution on Cigarette Butt Filter Paper. Journ of Foren Sci. 2013;58(2):1-4. https://doi.org/10.1111/1556-4029.12091 DOI: https://doi.org/10.1111/1556-4029.12091

Downloads

Published

2022-03-04

How to Cite

Bamidele Minari, J., & Ololade Ajayi, D. (2022). The Quality of mt-loop DNA Segment of Smokers and Nonsmokers in Lagos, Nigeria for Possible use in Forensic Biology . Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 11(2), 93–110. https://doi.org/10.17063/bjfs11(2)y202293-110

Issue

Section

Artigo Original