Stability and Expression of Selected miRNAs, circRNAs, and rRNAs in Swiss Albino Mice Tissues to Preditc Port-Mortem Interval

Authors

  • Dr. Iroanya Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria https://orcid.org/0000-0002-5122-1466
  • Dr. Egwuatu Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria https://orcid.org/0000-0002-6083-4133
  • Dolapo Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria
  • Solomon Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria
  • David Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria
  • Stephania Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

DOI:

https://doi.org/10.17063/bjfs12(3)y2024227-250

Keywords:

MicroRNA, Circular RNA, Ribosomal RNA, Forensic Pathology, Degradation, Post-mortem Interval, GAPDH, RT-qPCR

Abstract

In forensics, post-mortem interval (PMI) estimation is essential. Researchers have devised various approaches to accurately determine PMI, consequently, ribonucleic acid (RNA) molecules could be useful PMI estimation tool. This study aims to ascertain the stability and expression of some ribosomal RNAs, micro-RNAs, and circular-RNAs in rat post-mortem liver, heart and muscle tissues. Fifty healthy adult Swiss albino mice were divided into five groups, sacrificed and target tissues were harvested. These genes- miR-122, 18S, miR-133a, RPS18, Circ-LRP6, 5S rRNA, Circ-AFF1, Circ-Ogdh, LC-Ogdh, U6 and GAPDH- were selected for the study. Extracted RNA was subjected to spectrophotometric analysis, complementary Deoxyribonucleic acid (cDNA) synthesis and amplified by Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using gene-specific primers. For liver samples, miR-122 and 5S had the highest and lowest Cq-values respectively. There was a significant difference between the expression of GAPDH and Circ-Ogdh and 5S (p≤0.05). For the heart and muscle samples, miR-122 and Circ-LRP6 had the highest Cq-value respectively. In the heart, there was significant difference between the expression of GAPDH and miR-122, miR-133a and RPS-18 (p≤0.05).  In muscle tissue, there was significant difference between the expression of GAPDH and U6, Circ-AFF1 and Circ-LRP6 (p≤0.05). This study shows that miR-122 and LC-Ogdh (liver tissues), miR-122, miR-133a and Cir-LRP6 (heart tissues), and miR-122 and Circ-AFF1 (muscle tissues) are suitable reference genes for PMI estimation using GAPDH as a reference gene. In conclusion, a forensic method for PMI assessment may use a combination of tissue-specific miRNAs, ribosomal RNAs, SnRNAs, CircRNAs, and CircRNA+mRNA.

Author Biographies

Dr. Iroanya, Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

Department of Cell Biology and Genetics

University of Lagos

Lagos Nigeria

Dr. Egwuatu, Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

Department of Cell Biology and Genetics

University of Lagos

Lagos Nigeria

Dolapo, Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos Nigeria

Solomon, Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

 Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos Nigeria

David, Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos Nigeria

Stephania, Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos, Nigeria

Department of Cell Biology and Genetics, University of Lagos, Akoka Yaba, Lagos Nigeria

References

Lee DG, Yang KE, Hwang JW, Kang HS, Lee SY, Choi S, Shin J, Jang IS, An HJ, Chung H, Jung HI, Choi JS. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS One. 2016;11(8):e0160557. https://doi.org/10.1371/journal.pone.0160557

Lv YH, Ma JL, Pan H, Zeng Y, Tao L, Zhang H, Li WC, Ma KJ, Chen L. Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci Med Pathol. 2017;13(1):20-7.https://doi.org/10.1007/s12024-016-9827-4

Tu C, Du T, Ye X, Shao C, Xie J, Shen Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg Med (Tokyo). 2019;38:51-7. https://doi.org/10.1016/j.legalmed.2019.04.002

Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5(2):209-19.

https://doi.org/10.1586/14737159.5.2.209

Young ST, Wells JD, Hobbs GR, Bishop CP. Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci. Int. 2013;229(1-3)163.e1-6. https://doi.org/10.1016/j.forsciint.2013.03.035

Tu C, Du T, Shao C, Liu Z, Li L, Shen Y. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci Med Pathol. 2018,14(2):194-201. https://doi.org/10.1007/s12024-018-9973-y

Li WC, Ma KJ, Lv YH, Zhang P, Pan H, Zhang H, Wang HJ, Ma D, Chen L. Postmortem interval determination using 18S-rRNA and microRNA. Sci Justice. 2014;54(4):307-10. https://doi.org/10.1016/j.scijus.2014.03.001

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;3(9)402. https://doi.org/10.3389/fendo.2018.00402

Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, Wang K, Li P. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci 2017;13(12):1497-1506. https://doi.org/10.7150/ijbs.22531

Nahand JS, Jamshidi S, Hamblin MR, Mahjoubin-Tehran M, Vosough M, Jamali M, Khatami A, Moghoofei M, Baghi HB, Mirzaei H. Circular RNAs: New Epigenetic Signatures in Viral Infections. Front. Microbiol. 2020;11:1853. https://doi.org/10.3389/fmicb.2020.01853

Wang H, Xiang Y, Hu R, Ji R. Wang Y. Research progress of circular RNA in digestive tract tumors: a narrative review. Transl Cancer Res. 2020;9(12):7632-41. https://doi.org/10.21037/tcr-20-2708

Floris G, Zhang L, Follesa P, Sun T. Regulatory Role of Circular RNAs and Neurological Disorders. Mol Neurobiol. 2017.54(7):5156-5165. https://doi.org/10.1007/s12035-016-0055-4

Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 2018;75(6):1071-98. https://doi.org/10.1007/s00018-017-2688-5

Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer. 2018;25(1):1-7. https://doi.org/10.1007/s12282-017-0793-9

Li ZX, Wang LX, Zhang Y, Chen W, Zeng YQ. "circGLI3 Inhibits Oxidative Stress by Regulating the miR-339-5p/VEGFA Axis in IPEC-J2 Cells", BioMed. Res. Int. 2021,;2021:1-19. https://doi.org/10.1155/2021/1086206

Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. Journal of Biomedical Science. 2019;26(1):1-12. https://doi.org/10.1186/s12929-019-0523-z

Elghamry HA, Hassan FM, Mohamed MI, Abdelfattah DS, Abdelaal AG. Estimation of the postmortem interval using GAPDH mRNA in skin and heart tissues of albino rats at different environmental conditions. Egypt J Forensic Sci. 2018;8:69 https://doi.org/10.1186/s41935-018-0102-6

Maiese A, Scatena A, Costantino A, Di Paolo M, La Russa R, Turillazzi E, Frati P, Fineschi V. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics. 2021;11(1):64. https://doi.org/10.3390/diagnostics11010064

Montanari E, Giorgetti R, Busardò FP, Giorgetti A, Tagliabracci A, Alessandrini F. Suitability of miRNA assessment in postmortem interval estimation. Eur Rev Med Pharmacol Sci. 2021;25(4):1774-87. https://doi.org/10.26355/eurrev_202102_25069

Halikov AA, Kildyushov EM, Kuznetsov KO, Iskuzhina LR, Rahmatullina GR. Use of microRNA to estimate time science death. Review. Russian Journal of Forensic Medicine. 2021;7(3):132-8. https://doi.org/10.17816/fm412

Wang H, Mao J, Li Y, Luo H, Wu J, Liao M, Liang W, Zhang L. 5 miRNA expression analyze in post-mortem interval (PMI) within 48h. Forensic Sci Int Genet Suppl Series. 2013;4(1):e190-1. https://doi.org/10.1016/j.fsigss.2013.10.098

Elghamry HA, Mohamed MI, Hassan FM, Abdelfattah DS, Abdelaal AG. Potential use of GAPDH m-RNA in estimating PMI in brain tissue of albino rats at different environmental conditions. Egypt J Forensic Sci. 2017;7:24. https://doi.org/10.1186/s41935-017-0024-8

Catts VS, Catts SV, Fernandez HR, Taylor JM, Coulson EJ, Lutze-Mann LH. A microarray study of post-mortem mRNA degradation in mouse brain tissue. Brain Res Mol Brain Res. 2005;138(2):164-77. https://doi.org/10.1016/j.molbrainres.2005.04.017

Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1(2):106-13. https://doi.org/10.4161/rna.1.2.1066

Sharapova T, Devanarayan V, LeRoy B, Liguori MJ, Blomme E, Buck W, Maher J. Evaluation of miR-122 as a Serum Biomarker for Hepatotoxicity in Investigative Rat Toxicology Studies. Vet Pathol. 2016;53(1):211-21. https://doi.org/10.1177/0300985815591076

Clarke JI, Forootan SS, Lea JD, Howell LS, Rodriguez JM, Kipar A, Goldring CE, Park BK, Copple IM, Antoine DJ. Circulating levels of miR-122 increase post-mortem, particularly following lethal dosing with pentobarbital sodium: implications for pre-clinical liver injury studies. Toxicol Res (Camb). 2017;6(4):406-411.https://doi.org/10.1039/c6tx00442c

Birdsill AC, Walker DG, Lue L, Sue LI, Beach TG. Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank. 2011;12(4):311-8. https://doi.org/10.1007/s10561-010-9210-8

Sampaio-Silva F, Magalhães T, Carvalho F, Dinis-Oliveira RJ, Silvestre R. Profiling of RNA degradation for estimation of post mortem [corrected] interval. PLoS One. 2013; 8(2):e56507. https://doi.org/10.1371/journal.pone.0056507

Li WC, Ma KJ, Zhang P, Wang HJ, Shen YW, Zhou YQ, Zhao ZQ, Ma D, Chen L. Estimation of postmortem interval using microRNA and 18S rRNA degradation in rat cardiac muscle. Fa Yi Xue Za Zhi. 2010; 26(6):413-7

Hall IF, Climent M, Quintavalle M, Farina FM, Schorn T, Zani S, Carullo P, Kunderfranco P, Civilini E, Condorelli G, Elia L. Circ_Lrp6, a Circular RNA Enriched in Vascular Smooth Muscle Cells, Acts as a Sponge Regulating miRNA-145 Function. Circ Res. 2019;124(4):498-510. https://doi.org/10.1161/CIRCRESAHA.118.314240

Lv YH, Ma KJ, Zhang H, He M, Zhang P, Shen YW, Jiang N, Ma D, Chen L. A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat's spleen. J Forensic Sci. 2014;59(5):1286-94. https://doi.org/10.1111/1556-4029.12447

Burke JE, Sashital DG, Zuo X, Wang YX, Butcher SE. Structure of the yeast U2/U6 snRNA complex. RNA. 2012;18(4):673-83. https://doi.org/10.1261/rna.031138.111

Lv Y, Ma J, Pan H, Zhang H, Li W, Xue A, Wang H, Ma K, Chen, L. RNA degradation as described by a mathematical model for postmortem interval determination. J Forensic & Legal Med. 2016;44:43-52. https://doi.org/10.1016/j.jflm.2016.08.015

Zhang Q, Zhang H, Liu F, Yang Q, Chen K, Liu P, Sun T, Ma C, Qiu W, Qian X. Comparison of reference genes for transcriptional studies in postmortem human brain tissue under different conditions. Neurosci Bull. 2019;35(2):225-8. https://doi.org/10.1007/s12264-018-0309-4

Downloads

Published

2024-11-04

How to Cite

Iroanya, O. O., Egwuatu, T. F., Adebajo, A. M., Aloku, S. T., Uche, D. C., & Folorunso, S. S. (2024). Stability and Expression of Selected miRNAs, circRNAs, and rRNAs in Swiss Albino Mice Tissues to Preditc Port-Mortem Interval. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 12(3), 227–250. https://doi.org/10.17063/bjfs12(3)y2024227-250

Issue

Section

Artigo Original